On-line sequential extreme learning machine based on recursive partial least squares
نویسندگان
چکیده
منابع مشابه
On-line Sequential Extreme Learning Machine Based on Recursive Partial Least Squares
This paper proposes the online sequential extreme learning machine algorithm based on the recursive partial leastsquares method (OS-ELM-RPLS). It is an improvement to the online sequential extreme learning machine based on recursive least-squares (OS-ELM-RLS) introduced in [1]. Like in the batch extreme learning machine (ELM), in OSELM-RLS the input weights of a single-hidden layer feedforward ...
متن کاملLeast-squares temporal difference learning based on extreme learning machine
This paper proposes a least-squares temporal difference (LSTD) algorithm based on extreme learning machine that uses a singlehidden layer feedforward network to approximate the value function. While LSTD is typically combined with local function approximators, the proposed approach uses a global approximator that allows better scalability properties. The results of the experiments carried out o...
متن کاملOn-Line Sequential Extreme Learning Machine
The primitive Extreme Learning Machine (ELM) [1, 2, 3] with additive neurons and RBF kernels was implemented in batch mode. In this paper, its sequential modification based on recursive least-squares (RLS) algorithm, which referred as Online Sequential Extreme Learning Machine (OS-ELM), is introduced. Based on OS-ELM, Online Sequential Fuzzy Extreme Learning Machine (Fuzzy-ELM) is also introduc...
متن کاملWeighted Least Squares Scheme for Reducing Effects of Outliers in Regression based on Extreme Learning Machine
Neural networks have been massively used in regression problems due to their ability to approximate complex nonlinear mappings directly from input patterns. However, collected data for training networks often include outliers which affect final results. This paper presents an approach for training single hidden-layer feedforward neural networks (SLFNs) using weighted least-squares scheme which ...
متن کاملOn-line Parameter Interval Estimation Using Recursive Least Squares
A bank of recursive least-squares (RLS) estimators is proposed for the estimation of the uncertainty intervals of the parameters of an equation error model (or RLS model) where the equation error is assumed to lie between known upper and lower bounds. It is shown that the off-line least-squares method gives the maximum and minimum parameter values that could have produced the recorded input-out...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Process Control
سال: 2015
ISSN: 0959-1524
DOI: 10.1016/j.jprocont.2015.01.004